Steric gate variants of UmuC confer UV hypersensitivity on Escherichia coli.

نویسندگان

  • Brenna W Shurtleff
  • Jaylene N Ollivierre
  • Mohammad Tehrani
  • Graham C Walker
  • Penny J Beuning
چکیده

Y family DNA polymerases are specialized for replication of damaged DNA and represent a major contribution to cellular resistance to DNA lesions. Although the Y family polymerase active sites have fewer contacts with their DNA substrates than replicative DNA polymerases, Y family polymerases appear to exhibit specificity for certain lesions. Thus, mutation of the steric gate residue of Escherichia coli DinB resulted in the specific loss of lesion bypass activity. We constructed variants of E. coli UmuC with mutations of the steric gate residue Y11 and of residue F10 and determined that strains harboring these variants are hypersensitive to UV light. Moreover, these UmuC variants are dominant negative with respect to sensitivity to UV light. The UV hypersensitivity and the dominant negative phenotype are partially suppressed by additional mutations in the known motifs in UmuC responsible for binding to the beta processivity clamp, suggesting that the UmuC steric gate variant exerts its effects via access to the replication fork. Strains expressing the UmuC Y11A variant also exhibit decreased UV mutagenesis. Strikingly, disruption of the dnaQ gene encoding the replicative DNA polymerase proofreading subunit suppressed the dominant negative phenotype of a UmuC steric gate variant. This could be due to a recruitment function of the proofreading subunit or involvement of the proofreading subunit in a futile cycle of base insertion/excision with the UmuC steric gate variant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Escherichia coli UmuC active-site loops identifies variants that confer UV hypersensitivity.

DNA is constantly exposed to chemical and environmental mutagens, causing lesions that can stall replication. In order to deal with DNA damage and other stresses, Escherichia coli utilizes the SOS response, which regulates the expression of at least 57 genes, including umuDC. The gene products of umuDC, UmuC and the cleaved form of UmuD, UmuD', form the specialized E. coli Y-family DNA polymera...

متن کامل

Inducibility of a gene product required for UV and chemical mutagenesis in Escherichia coli.

The product of the umuC gene is required for UV and chemical mutagenesis in Escherichia coli. By the use of the Mud(Ap, lac) bacteriophage, we have obtained an operon fusion of the lac structural genes to the promoter/regulatory region of the umuC gene. The strain containing the umuC::Mud(Ap, lac) fusion was identified on the basis of its UV nonmutability. Strains containing this putative null ...

متن کامل

Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity

The active form of Escherichia coli DNA polymerase V responsible for damage-induced mutagenesis is a multiprotein complex (UmuD'(2)C-RecA-ATP), called pol V Mut. Optimal activity of pol V Mut in vitro is observed on an SSB-coated single-stranded circular DNA template in the presence of the β/γ complex and a transactivated RecA nucleoprotein filament, RecA*. Remarkably, under these conditions, w...

متن کامل

UV-induced mutagenesis of phage S13 can occur in the absence of the RecA and UmuC proteins of Escherichia coli.

The UV-induced mutagenesis of phage S13 that accompanies Weigle repair is known to require the products of the recA and umuDC genes, as does the UV-induced mutagenesis of the Escherichia coli chromosome. I found that UV-induced mutagenesis of phage S13 occurred in the absence of both the RecA and UmuC functions when the irradiated phage was photoreactivated. Furthermore, UV-induced phage mutati...

متن کامل

I " ; Analyses of the Roles of the UmuDC Proteins of E . coli in SOS Mutagenesis and Cell Cycle Regulation

Regulated mechanisms that inhibit DNA synthesis and cell cycle progression in response to DNA damage have been shown to be essential for DNA damage tolerance in eukaryotes. Analogous mechanisms have not been as well defined in prokaryotes. Evidence presented in this thesis suggests that the UmuD and UmuC proteins of Escherichia coli participate in a mechanism to inhibit growth and DNA synthesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 191 15  شماره 

صفحات  -

تاریخ انتشار 2009